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Abstract

Assuming only small gyromotion periods and Larmor radii compared to any other time and length
scales, and retaining the lowest significant order in § = p;/L < 1, the general expression of the ion
gyroviscous stress tensor is presented. This expression covers both the ”fast dynamics” (or ”magne-
tohydrodynamic”) ordering, where the time derivative and ion gyroviscous stress are first order in ¢
relative to the ion gyrofrequency and scalar pressure respectively, and the ”slow dynamics” (or ”drift”)
ordering, where the time derivative and ion gyroviscous stress are respectively second order in §. This
general stress tensor applies to arbitrary collisionality and does not require the distribution function
to be close to a Maxwellian. Its exact divergence (gyroviscous force) is written in closed vector form,
allowing for arbitrary magnetic geometry, parallel gradients and flow velocities. Considering in partic-
ular the contribution from the velocity gradient (rate of strain) term, the final form of the momentum
conservation equation after the ”gyroviscous cancellation” and the ”effective renormalization of the

perpendicular pressure by the parallel vorticity” is precisely established.



I. Introduction.

The inclusion of finite ion Larmor radius (FLR) effects in the fluid moment equations, is a fun-
damental part of the so-called ”extended magnetohydrodynamic” (extended-MHD) or ”multi-fluid”
description of magnetized plasmas. Extended-MHD theories are currently the subject of very active
research, since they are recognized to be necessary to explain many important phenomena such as the
sawtooth, neoclassical-tearing and edge-localized modes in tokamaks, the stability of field-reversed-
configurations (FRC), or the magnetic reconnection processes in general. The main FLR effect in
the ion momentum conservation equation is the gyroviscous force. This term, in its most elementary
form which takes into account only a simplified contribution from the velocity gradient (rate of strain)
tensor, has long been known to allow the diamagnetic stabilization of single-fluid modes!~*. However,
realistic theoretical analyses and numerical simulations that could live up to the expectation of a reli-
able predictive capability, need a more accurate treatment of the gyroviscosity. There are two aspects
to this. First, the appropriate form of the stress tensor should be used according to the plasma regime
under consideration, bearing in mind that the simplest and most popular form that involves just the

velocity gradient tensor?—6

applies only to high collisionality and fast (MHD-like) time evolution with
sonic flows. Second, an accurate evaluation of the divergence of the stress tensor should be carried
out, allowing for realistic magnetic geometry, finite parallel gradients, and compressible flow velocities

with comparable parallel and perpendicular components.

Proper expressions of the gyroviscous stress tensor II9Y", applicable to different collisionality

regimes, are available in the literature—19.

These have been derived for either the ”fast dynam-
ics” ordering characterized by u ~ v, 9/0t ~ 08 and I19Y" ~ §p, or the ”slow dynamics” ordering
characterized by u ~ 6vg;, 0/0t ~ §?Q; and T199" ~ §2p (here § = p;/L < 1 is the ratio between the
ion gyroradius and other length scales, €).; and wvs; are the ion gyrofrequency and thermal speed, u
is the macroscopic flow velocity and p is the scalar pressure). Braginskii’s® form applies to high colli-
sionality and fast dynamics, Mikhailowskii-Tsypin’s” applies to high collisionality and slow dynamics,

and Macmahon’s® applies to collisionless or arbitrary collisionality regimes and fast dynamics. The

Simakov-Catto? result was derived for slow dynamics without explicit assumptions on the collision-



ality, but requiring that the distribution function would still be a Maxwellian in lowest order. The
results of Ref. 10 are completely general (within the lowest significant order in the small-0 asymptotic
expansions), do not require the distribution function to be close to a Maxwellian and contain all the
above as special limits. As far as the implementation of these results is concerned, only Braginskii’s
expression has so far been included or is in the process of being included in the state of the art nu-

merical simulation codes!!—14,

With regard the evaluation of the divergence of the gyroviscous stress tensor (the gyroviscous

11-13

d?=515722 and implemented numerically , even

force), only approximate results have been reporte
when consideration was limited to the simplest Braginskii form. Routinely made approximations in-
clude constant magnetic field, neglect of parallel derivatives, incompressible or mostly perpendicular
flow, weak anisotropy, low beta or electrostatic limits. The purpose of this work is to provide the exact
expression of the gyroviscous force, in coordinate-free vector form, without invoking any of those sub-
sidiary assumptions and based on the general stress tensor derived in Ref. 10. An explicit gyroviscous
force is not necessary in a numerical scheme that uses the weak form of the discretized equations
such as the one adopted by the NIMROD code'®. In this case, only the scalar products with a set of
basis functions are used and, following partial integration, only the stress tensor (not its divergence)
is needed explicitly. However, besides its theoretical interest, the availability of an expression of the
force will always be useful to enforce possible cancellations and to provide the possibility of other

numerical schemes.

I1. The general gyroviscous stress.

The gyroviscous stress is defined as the traceless and perpendicular (i.e. TI7/" =TI/ b;b; = 0) part
of the stress tensor in the fluid rest frame that does not depend explicitly on the collision frequencies.
The fluid rest frame stress tensor can be uniquely split into its Chew-Goldberger-Low (CGL) part and

its traceless perpendicular part:

m/dgv (vi —ui)(vj —uj) f(v,x,t) = pidij + (p —pL)bibj + Py, (1)



where ]5ZZ = Hjbibj = 0. The tensor Jf’ij can in turn be uniquely split into parts that do and do not

depend explicitly on the collision frequencies, and this specifies the gyroviscous stress:
Ul
In Eq.(1), f(v,x,t) is the distribution function, u(x,t) is the macroscopic flow velocity,

/d3v v f(v,x,t) = nu;, (3)

with n(x,t) the particle density,

/ d3v (v,x,t) = n, (4)
p||(x,t) and p, (x,t) are the parallel and perpendicular pressures, and b(x,t) = B/B is the magnetic
unit vector. It is also useful to introduce the mean scalar pressure p = (p + 2p_1)/3. All the analysis
in this paper refers to the ion variables, so the ion species index is dropped throughout. A completely
similar analysis could be carried out for the electrons, but electron gyroviscosity and other electron

Larmor radius effects are usually neglected due to the small electron mass.

Analogously, the third rank stress-flux tensor can be written as:

m/d3 i —wi) (v — ) (vk —uk)f = qrduzbyy + (2gp) — 3q7))bibjbr + O + Ok, (5)

where the CGL variables ¢ and gp| are the parallel fluxes of perpendicular heat and parallel heat
respectively, and ©7/'b; = @Zgjy,:b biby = @fg]b @fwkb bjb, = 0. In our notation, the square
brackets around indices represent the minimal sum over permutations of uncontracted indices needed

to yield completely symmetric tensors.

Considering the v;v; moment of the kinetic equation for f(v,x,t), it follows that Hf]‘yr can always

be expressed!0:23:24 a5

1
and the general form of the tensor KJY" is given in Ref. 10. Within the lowest significant order in the
fundamental expansion parameter J, but keeping enough terms to cover both the fast dynamics and

slow dynamics orderings with a single formula, it is:



du;  Aaryby) ik
o _ M i k) 4
1 eB [pL 61‘[2 833‘[1 + [i G4 + oxy ) (7)
where
p|— DL 1 1 b — Pt
c = (2qp| — 3qr))k + (*” 5 ) {2(B'V)U—VX l@vPLJr@(B'V)( : B b)” (®)

and k = (b - V)b is the magnetic curvature.

The collision-independent perpendicular stress-flux tensor @ijg is a quantity of order dpuvyy,, which

is needed only in the slow dynamics ordering where u = O(dvy,) and K" = O(6%p). For this case,

and within the required accuracy of O(dpvy,), the result of Ref. 10 can be written as:

T T 1 (0% (%n 8bm
Ok = 2bpbjagy + 5(5[1'1—5[1'53‘)(1%@] * §f[ilmbﬂ'bl<%+a—%> (Busg = babig) ~ (9)

with

, 1 1 P p () —pL) 1o (0 ~0 _(0)  ~(0)  ~(0
afl = —gbx [imv<5”> +=1 ”n —ﬁ+gV(Tﬂ)+T(A))+(’“|(| AT L G 1))

: 1, o - i
a] = e—b X [2pLV<%> + gV(4r$)) — rg))) + rg])ml , (11)

and

+ 7

1 lPL(P —pL) . (12)

:E 2n

Here, q})| and g}’ are the collision-independent parts of the perpendicular fluxes of parallel heat
and perpendicular heat respectively. The scalars Fﬁo), ff) and fg)), whose precise definition is given
in Appendix A, are three independent components of the fourth rank fluid moment, evaluated on the

difference between the actual zeroth-order distribution function and a two-temperature Maxwellian.

The divergence of the collision-independent perpendicular stress-flux tensor 8@%3?’,: /Oxy, was not

evaluated explicitly in Ref. 10 in the most general, strongly anisotropic case. The details of this

calculation are now given in Appendix B. We note that terms proportional to d;; and b;b; in K %yr do



not contribute to Hf]yr. Thus, bringing the result of Eqs.(57,58) to (7) and dropping the d;; and b;b;

terms, we get the final expression:

" Ouy 0 ajj L gyr
Kigjy = B { yan B + %[Z [<CIT| B bj + qu"yj_j] + by (¢ +dj)) +

ob.; Ok ;
+ Kl 914 T €fitm [(V - (ab) by + Ml)ﬁ + abzﬁ] } ; (13)

where j| = b - (V x B) is the parallel current,

r 1 gy 1 pp—pL\ , 2p(pp—p1) 1. _ 0 5.
gl:Qq%yL—ﬁqgﬂngxlpr< Hn )—i— H ”n ﬁ+§Vrg))+<2rﬁ0)—2rf)—§r$))n

and

d = %ﬁ + Vx [g1xb—a(V-b)b| + 2{[g1 +V x (ab)| - V}b. (15)

This general formula (6,13) for the gyroviscous stress takes into account all the details of the mag-
netic geometry, and is valid for strongly anisotropic and far from Maxwellian distribution functions.
If the distribution function were Maxwellian or just isotropic in lowest order, then (pH — p,) would

=(0) _ ~(0) (0)

vanish in lowest order as would (7"” —7,’) and 7, . In this particular case, the lowest significant

order expression (13) for K7/" would lack the a, g and d terms.

III. Special limits.

The formerly known gyroviscosity tensors, which apply to different more specific regimes, can be

recovered as special limits of our general expression. In a high collisionality regime, the lowest-order

distribution function is Maxwellian, therefore (p; —p1) < p, ¢ < pvy, and 7:|(|0) — fgf’) - fg’) =0. It

also follows that, at high collisionality, (2¢g| — 3q7)) < dpvy, and 1293 — %q?ﬁﬂ < dpuy,. If besides



one considers fast dynamics with sonic flows, u ~ vy, the gyroviscous stress is 199" ~ dp. Within this

first-order accuracy, Eq.(13) reduces then to the Braginskii form®:
ou;
Ko — MPL 2] 16
K eB Oz’ (16)

in which case one can take p; = p.

Considering high collisionality but slow dynamics with diamagnetic flows, u ~ dvyy, the leading

order gyroviscous stress is 119" ~ §%p. If we keep this second-order accuracy using the above high

collisionality simplifications, Eq.(13) reduces to the Mikhailowskii-Tsypin form”23:
ou,; 0 1
gyr _ ™M J] L togr
Kij  ¢eB lpj' 8%@ N 333[1- <qT”bj] + ZqTLj]>] ’ (17)

in which case p; = p and g7b; + %q%zfj = %[(QT” +qp)bj + q%?fj + Q%yjj]-
Without any assumptions on the collisionality so that the distribution function is allowed to be
far from Maxwellian and highly anisotropic, but considering the fast dynamics ordering so that only

O(dp) accuracy needs to be retained, Eq.(13) reduces to:

o m ou i1 a(qT”b-]) .
Kl%.y = B { L 8xj[2 + ax[i] + b[i (2qBH — 3qT||)I€j} +2(pH —pL)bka—xJk , (18)

in agreement with Macmahon’s result®.

Finally, we may consider the slow dynamics ordering without any explicit reference to the colli-
sionality regime, but assuming that the lowest-order distribution function would still be Maxwellian
or at least isotropic. At low collisionality, this is guaranteed only under some special circumstances
such as equilibria with closed magnetic surfaces. In this case, as discussed in the preceding section,
the o, g and d terms drop from Eq.(13). Also, the term proportional to (p —p1) in the vector c

(8) becomes negligible within the leading order accuracy 119" ~ §%p. Thus, we get?10:

. m 8u]] 0 1 TO
Ky =B lp Loa %(qﬂjﬁﬁiﬂ) + b (205 = 3ary)ng) | - (19)



Here p, can be taken equal to p, and the reduced expression for q%yj follows from the corresponding
limit of Eq.(11). If one assumes a Maxwellian lowest-order distribution function?, this is

r 2p D

and if one assumes an isotropic but not necessarily Maxwellian lowest-order distribution function!®

with fﬁo) =i =50 20, it is

2 D 2
gyr £ Sy
qy| - b x [pv (n) + 5Vr ] . (21)

IV. Explicit gyroviscous force and momentum conservation equation.

The divergence of the gyroviscous stress tensor contributes the gyroviscous force term to the
momentum conservation equation. In order to obtain an explicit representation of the gyroviscous
force vector, it is convenient to split the stress tensor in five terms according to the five terms in the

r.h.s. of Eq.(13):

5 5
T T ]‘ T
= S = LK) (g 30 22
N=1 N=1
with
ou
gowrl _ mpL 9t 23
R eB Oz (23)
o _ om0 aj 1 gyr
Ki"™ = B on, [(qT” - f)bﬂ e 2y
r3 m
K™ =5 b (e +dy) (25)
r4
K" =% kL) (26)
and
gyrd ﬂ . . % %
K& = - Clitm [(V (ab) by + Oéfiz) Bz, + ab B | (27)



The first term, driven by the velocity gradient (or rate of strain) tensor, is the one most commonly
considered?~6:11=18  However, only approximate calculations of the corresponding force vector have
been reported, as far as this author is aware. The exact result in coordinate-free form, whose derivation

is detailed in Appendix C, is:

V-9 = —mn (u,-V)u — Vy —

+(B-V){T€”g§bx[s(b-V)u+b><w] + %b}. (28)

Here, w = V x u is the vorticity with the scalar x proportional to its parallel component,

mpL
= b - 2
X=5.p bw, (29)
and u, is the magnetization velocity:
W= v (Pp) (30)
en B

The second term includes the contribution from the gradients of the heat fluxes. Since it has the
same form as the first one, the corresponding piece of the gyroviscous force can be obtained by direct
substitution:

VI = VT p - 15w (g — agy/B)b + aff] /2] . (31)

The 1199”3 and T199"* terms are in the form of symmetrized tensor products of vectors (diadic

forms):
m

vt = {bx(+d)]b + bbx(c+d)]} (32)

e



and

ovrt — 461]3[(]0X,{)gL + g1 (bxn) + (bxg)n + r(bxgl)|. (33)

Therefore the evaluation of their divergence is straightforward and, using standard vector identities,

we can write:
2m

et d)] (34)

V-I1993 = Vx{Bx [e—gz(c—l—d)]} + (B~V){
and

oot — %{{(v.ﬁ)b_(b.v)n} xgL + [V (bxr) gl} -

+{[v.(mgL)_mgrﬂ b (b.w(m&)}m b v (mbxsy

2eB 2eB 2eB 2eB
+ m gL (VXK —mj“gl.ﬂ—i—/ﬁ'{vx(mgj_ﬂ b (35)
2¢B 2e B2 2¢B ’

Like I19¥4, the I199™ term needs to be retained only in the slow dynamics ordering and then only
if the lowest-order distribution function is anisotropic. Its divergence is evaluated following procedures

similar to those used in the Appendices B and C. Without elaborating on the details, the result is:

mV - (ab) b) n

CTT9yrS ma . .
V.11 v[QeB(v k) +V ( N

mo mV - (ab) ma J| mV - (ab) jj
VX {bx <4eB ST “’) * [Qer (B b) + e P T

mao

W[fl‘F(V'I{) b}‘F

—I—(B-V){ 5o 52 K+B

+bx{<{Vx<%§éb) b)}-V)b + ([VX(% b)].v>n}+

G () b = [xr) V] (22 by — VD) e g

mV - (ab) iv{mv : (ab)} }

10



where

@:5(K~V)b—(v.b)m+bx{3[(bxm)-v}b—%m}, (37)

and 7, ¢ are the vectors with components

O b

7 = €kl €jmn b; S Dp. (38)
oby, 0Ky
Ci = €kl €jmn bj % 8—% . (39)

In the momentum conservation equation, parts of V - I19%"1 (28) can be combined with the di-
vergence of the Reynolds stress and the CGL stress. Collecting all the terms, the final form of the

complete momentum conservation equation is

mna—u + mn[(u—u*)~V}u + V(pL—x) + (B-V)<w b) —

ot B
be

—Vx{m“ l(b~V)u + %(v-u—%-[(b-wu]) b

+(B~V){%bx [3(b~V)u+bxw}}+

5
+v-<ZHWN+HCf”> —en(E+uxB) — F = 0, (40)
N=2

where E stands for the electric field and F! for the collisional friction force. Thus, the magnetization
velocity u, substracts from the total flow velocity u in the convective derivative operator u - V.

»3,4,15—19

This property is famously known as the ”gyroviscous cancellation However, contrary to

widespread lore, the cancelled part of u is the magnetization velocity u,, not the diamagnetic drift

11



velocity ug = b x Vp, /(enB). Only for a constant magnetic field is u, = ugy. Also, we observe that
the parallel vorticity term y acts as an effective renormalization of the perpendicular pressure:

m
plﬁpl—xzm(l—ﬁb-w), (41)

leaving the parallel pressure unaffected. The other two terms (a curl and the parallel derivative of a
perpendicular vector) which still stem from the Braginskii piece V - 119", along with the remaining
V- (X%—o 99N piece (31,34-36), complete the gyroviscous force contribution to the momentum

equation.
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Appendix A: The zero-Larmor-radius fourth rank fluid moment.

In its lowest order, the collision-independent perpendicular stress-flux tensor @ij,: = O(dpve,)

(9-12) involves!? the divergence of the zero-Larmor-radius fourth rank moment:

i- =m /d3 i —u;) (v — uy) (v — ug) (v — wy) 7O, (42)

Here, fO = fO(m|v — u|?/2, \,x,t) is the zero-Larmor-radius distribution function which depends
on the velocity space coordinates through the fluid-rest-frame energy, m|v—u|?/2, and the pitch angle,

sin A = (v —u) - b/|v — u|, but is independent of the gyrophase. Then, writing
N, = Lps bbj| |pLo biby| + NS 43
gkt = [PL j + (P — pL)bp j] {m k) + (P — L)l z]} + Nk (43)
one gets

~ 1/ . 1 1. 5 s 7
Nz(jok)l = 3(27’10) 2 (0))5[1](5]6” + 57’20)5[”1%5” + (27"‘('0) —27’(0)—57“20))bibjbkbl (44)

where
2
= m—/d3v v —ul? cos? X (fO = fonr), (45)
N(O) _m /d3 v —u)* sin? A (f©O = fonr), (46)
fg)) = %/d3v v —ul* cos? A (5sin? A — 1)(f© — fonr) (47)

and fops is the two-temperature Maxwellian:

32 52 2 2 L2
m n mn|v—u cos® A\ sin“ A
fonr(mlv — u|2/2>)‘7xat) = (2—> 1 OXP [— ’2 | ( + )] (48)
i pL p” pL D

If the zeroth-order distribution function f(©) were isotropic (not necessarily Maxwellian), i.e. inde-

pendent of A with p| = p,, one would have rﬁo) = T(O) and 7’(0) = 0. With a Maxwellian zeroth-order

~(0) ~(0) =(0)

distribution function, ST T and 7, would vanish.

13



Appendix B: Divergence of the anisotropic stress-flux tensor.

This Appendix will outline the evaluation of the divergence of the strongly anisotropic stress-flux

tensor!® in the slow dynamics ordering (9-12):

T 1 r o 8[) 8bm
Ok = F0uarly + Pubigie + S €umb; bz( ot 8—%) (B0 — bubiy)

gyr

where the notation g| = 2q5 | %q‘%yj is used.

For any vector A with curl C =V x A, we have the identity

0A;  0A

al’i 8IL‘J'

and for the magnetic unit vector b,
Vxb = bxk + ﬂb .
B

Therefore we can write

g;):z ng: - 2(';9;; + bnkim — bmkn + %Enmpbpa
hence |
Gilmbl<% + gi:) (5nk — bnbk> = 2eilmbl% + %(bibk _ 5ik)
and
Ok = % (;quyf% % bkl) + bbs (sukﬁ—”bk]) + a€mb; b’gbi .

The next step is to carry out an integration by parts in the last term, which yields

8(ablbjbk])

r ro ||
CHIE 5[w< @y — 5 bk]> + bibihy + €fitm oz

where h = g + (ajj/B)b+ V x (ab).
The divergence of this last expression can be readily evaluated:

14

(49)

(55)



007 o (1 o (1 @ oh
Mgk qyr ]|| B gyr ‘]” Ytk +
oxy, oxy, <2qTJ‘k bk) %i Oz <2qTJ‘J] bj]) 0xy, bibi Fli hy)

Ohy . by by o [o(aby)
+ b[@' (bk 9 Jk a—xjk 3Ik h ]> + e[ilm%[ Oy bib; ] + Otfﬂbj] + abmﬂ . (56)

Finally, expanding the last 0/0x,, derivative, using standard vector identities and collecting like terms,
we get:

00" 1 o (1
s =V <2q“’TyI jllb) 0 + ﬂ(z#ﬂ] j”%]) + 3V hbib; +

8b-} 8/@1
with
o
d = % ki + Vx [grxb—a(V-bb| + 2{[gL +V x (ab)] - V}b. (58)

15



Appendix C: Divergence of the velocity-gradient-driven gyroviscosity tensor.

In this Appendix we shall evaluate the divergence of the velocity-gradient-driven part® of the

gyroviscous stress tensor (22,23):

. mp 8um 8“
Iy = FE%klbk<a—xl " ﬁ) (Bms) + 30mby) - (59)

Following the procedure of Appendix B, we apply the identity (50) to the vector u with w = V x u,

to get:
ouy  Ouy B ou; ouy B
Giklbk (8—1‘1 + %> <5mj + 3bmbj> = eiklbk [<2a—$l + eﬂnwn> + 3(2% + €lmnWn bmbj =
aU' 811,[
= 2€iklbk8—x]l — bkwkéij + (GGiklbkbm% — 2w; +3bkwkbi> bj . (60)
Therefore we can write:
gyrl  _ %E‘klbk% — X 6 + By a; (61)
B 2B ox; " e %l
where
_mpy
X= 55 b w (62)
and
_ mp | X
- 2@BQbX[3(b V)u+bxw| + 5 b (63)
After an integration by parts, Eq.(61) becomes
ot = O (meL mn 5; + B 64
i T 9w\ 2eB CikiOkUg) | = 5 Ul U] T X O + byj aj) (64)
with
1 DL
.= —— —b]. 65
u env X (B ) (65)

16



We can now evaluate easily the divergence of the latter expression (64):

ooyt o 0 [mp Ou; m O(nug uyq) 0 0By; a;)
g 9, Y [MmPL ouj mpL _ M APTE B)  OX 0 PR S5D
Ox;j N Q’“axl [ujaxj (263 bk) +81:j 2eB bk} 2 Ox;j ox; + ox; (66)

or using vector notation, taking into account V - (nu,) = 0, V- B = 0 and standard vector identities,

VoI = -V x [(u-w@fg b>+ (V-u) 5= b| -
—% [Vx (nu, xu)+2n(u*-V)u} — Vx + Vx(Bxa) + 2(B-V)a. (67)

Finally, we collect terms and use some further vector identities to arrive at the result:

Vet = VX{";”J’; l(b~V)u + %(v-usb.[(b.V)uD b]}
—mn (u-V)u — Vxy + 2(B-V)a. (68)

17
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